A. **Cross Products.** Let us talk about a second useful way to multiply vectors. We call it the cross product.

$$(3D \text{ vector}) \times (3D \text{ vector}) = (3D \text{ vector})$$

Let us explain what characterizes it.

If \mathbf{v} and \mathbf{w} are 3D vectors with smaller angle $\boldsymbol{\theta}$ between them, then their cross product $\mathbf{v} \times \mathbf{w}$ is the 3D vector that:

- is orthogonal to both v and w
- has direction determined by the righthand rule

 \bullet has length equal to the area of the parallelogram formed by v and w, i.e.:

$$\|\mathbf{v} \times \mathbf{w}\| =$$

Cross products are only for 3D vectors? I wonder why?

By "smaller angle" we mean an angle in the range $0 \le \theta \le \pi$.

In words, to execute the righthand rule, curl your fingers in the direction of shortest rotation from **v** to **w**, in which case your thumb is pointing in the direction of the cross product.

For any 3D vectors **v** and **w** we have the following properties.

Anti–Commutativity: $\mathbf{w} \times \mathbf{v} =$

Self–Annihilating: $\mathbf{v} \times \mathbf{v} =$

Oh dear lord I cannot just change the order of mulitplication like I have been doing my entire dang life?

Example 1. Compute the cross products involving the special vectors:

i =

j =

 $\mathbf{k} =$

i, j, k is really physics notation.Mathematicians might prefer e₁, e₂, e₃.

 $\mathbf{i} \times \mathbf{j} =$

 $\mathbf{i} \times \mathbf{k} =$

 $\mathbf{j} \times \mathbf{k} =$

 $\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) =$

 $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} =$

Oh my god. You **cannot** freely move parentheses around? That's SO messed up. This is referred to as the **failure** of associativity: $(\mathbf{v} \times \mathbf{w}) \times \mathbf{r} \neq \mathbf{v} \times (\mathbf{w} \times \mathbf{r})$. Associativity is all about moving parentheses around.

Next use the idea that any 3D vec can be written in terms of these special vecs:

$$\langle a, b, c \rangle =$$

along with the new properties in the margin to find:

$$\langle 1, 2, 0 \rangle \times \langle 2, 0, 0 \rangle$$

distributivity:

$$\begin{split} &(\mathbf{v}+\mathbf{w})\times\mathbf{r}=\mathbf{v}\times\mathbf{r}+\mathbf{w}\times\mathbf{r}\\ &\mathbf{v}\times(\mathbf{w}+\mathbf{r})=\mathbf{v}\times\mathbf{w}+\mathbf{v}\times\mathbf{r}\\ &\text{commutativity with scalars:}\\ &(c\mathbf{v})\times\mathbf{w}=\mathbf{v}\times(c\mathbf{w})=c(\mathbf{v}\times\mathbf{w}) \end{split}$$

B. Computing Cross Products. So far cross-products seem tough to compute.

The cross–product $\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle$ equals the **determinant**:

 $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

which means it equals:

Is there not a magic formula?

We call a rectangular array of entries a matrix. The determinant of a 2 by 2 matrix is:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

and this is what we are computing thrice as part of calculating the cross product.

Find a nonzero vector orthogonal to both $\mathbf{v} = \langle 2, -1, 1 \rangle$ and $\mathbf{w} = \langle -3, -1, 2 \rangle$.

From now on, if you ever need a vector orthogonal to two other 3D vectors, cross products better leap into your mind!

C. **Scalar Triple Product.** The cross product and dot product do not have to operate in isolation. We can execute them in succession:

The scalar triple product of 3D vectors **v**, **w**, **r** is:

$$\mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) = \langle v_1, v_2, v_3 \rangle \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ w_1 & w_2 & w_3 \\ r_1 & r_2 & r_3 \end{vmatrix} = \begin{vmatrix} w_1 & w_2 & w_3 \\ r_1 & r_2 & r_3 \end{vmatrix}$$

Underlying the last equality is that:

$$\mathbf{v} \cdot \mathbf{i} = \langle v_1, v_2, v_3 \rangle \cdot \langle 1, 0, 0 \rangle = v_1$$

$$\mathbf{v} \cdot \mathbf{j} = \langle v_1, v_2, v_3 \rangle \cdot \langle 0, 1, 0 \rangle = v_2$$

$$\mathbf{v} \cdot \mathbf{k} = \langle v_1, v_2, v_3 \rangle \cdot \langle 0, 0, 1 \rangle = v_3$$

It has an important geometric meaning. Each pair of vectors from **v**, **w**, **r** forms a parallelogram, and together they form an object called a **parallelepiped**.

Say that three times fast. You can think of it as a slanted cube.

Then:

$$\mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) =$$

The parallelepiped formed by **v**, **w**, **r** has **signed volume** equal to their scalar triple product.

A signed volume can be negative, specifically in this case if the shortest angle between \mathbf{v} and $\mathbf{w} \times \mathbf{r}$ is more than 90° in magnitude.

Example 2. Find the volume of the parallelepiped with vertex A(1,0,3) adjacent to vertices B(2,2,6), C(5,5,9), D(8,8,13).

This is probably not even close to how this parallelepiped actually looks in xyz-space. Nonetheless we make a sketch because it helps organize our thoughts. And god knows I need help with that.