Lecture 3. A1 — Vectors and Vector Operations.

A. Cross Products. Let us talk about a second useful way to multiply vectors.
We call it the cross product.

(3D vector) x (3D vector) = (3D vector)

Let us explain what characterizes it.

Cross products are only for 3D vectors? I

wonder why?
If v and w are 3D vectors with smaller angle 6 between them, then their cross

product v x w is the 3D vector that: By “smaller angle” we mean an angle in

the range 0 < 0 < .
e is orthogonal to both v and w

e has direction determined by the righthand rule

VXW

In words, to execute the righthand rule,
curl your fingers in the direction of
shortest rotation from v to w, in which
case your thumb is pointing in the

direction of the cross product.

e has length equal to the area of the parallelogram formed by v and w, i.e.:

v xwl =

For any 3D vectors v and w we have the following properties. Oh dear lord I cannot just change the
order of mulitplication like I have been

Anti-Commutativity: w x v = doing my entire dang life?

Self-Annihilating: v x v =
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Example 1. Compute the cross products involving the special vectors:

i, j, k is really physics notation.
Mathematicians might prefer e;, e, es.

j=
k =
ixj=
Oh my god. You cannot freely move
ixk= parentheses around? That’s SO messed
up. This is referred to as the failure of
jxk= associativity: (v X w) X r # v x (w X r).
Associativity is all about moving
ix(ix]j) = parentheses around.
(ixi)xj=

Next use the idea that any 3D vec can be written in terms of these special vecs:

(a,b,c) =

along with the new properties in the margin to find: distributivity:
(v+w)Xr=vxXr+wxr
<])2)O>X<2)O)O> VX (WHr)=vXw+vXr
commutativity with scalars:

(cv) xw=v X (cw) =c(vxw)
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B. Computing Cross Products. So far cross-products seem tough to compute.

The cross—product (aj, az, az) x (by, b2, bs) equals the determinant:

i j k
a az as
b1 by b3

which means it equals:

+ a as — ag as + ay az
b, bs b1 bs by by

Find a nonzero vector orthogonal to both v = (2, —1,1) and w = (—3,—1,2).

Is there not a magic formula?

We call a rectangular array of entries a
matrix. The determinant of a 2 by 2

matrix is:
a b
=ad—bc
c d

and this is what we are computing thrice
as part of calculating the cross product.

From now on, if you ever need a vector
orthogonal to two other 3D vectors, cross
products better leap into your mind!
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C. Scalar Triple Product. The cross product and dot product do not have to
operate in isolation. We can execute them in succession:

The scalar triple product of 3D vectors v, w, r is:

i j k
vo(wXxr)=(vi,v2,v3) - | w1 wz w3 |=|w; wy w3
T1 T2 T3 T T2 T3

It has an important geometric meaning. Each pair of vectors from v, w, r forms a
parallelogram, and together they form an object called a parallelepiped.

W XrT

Then:

v-(wxr)=

The parallelepiped formed by v, w, r has signed volume equal to their scalar
triple product.

Underlying the last equality is that:
v-i=(vi,v2,v3) (1,0,0) =v;
v-j={vi,v2,v3) - (0,1,0) = v,
v-k = (vi,v2,v3)-(0,0,1) =v;3

Say that three times fast. You can think of
it as a slanted cube.

A signed volume can be negative,
specifically in this case if the shortest
angle between v and w x r is more than
90° in magnitude.
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Example 2. Find the volume of the parallelepiped with vertex A(1,0,3) adjacent
to vertices B(2,2,6), C(5,5,9), D(8,8,13).

N
This is probably not even close to how

this parallelepiped actually looks in

xyz-space. Nonetheless we make a sketch

because it helps organize our thoughts.
And god knows I need help with that.
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