A. **Cross Products.** Let us talk about a second useful way to multiply vectors. We call it the cross product. $$(3D \text{ vector}) \times (3D \text{ vector}) = (3D \text{ vector})$$ Let us explain what characterizes it. If $\mathbf{v}$ and $\mathbf{w}$ are 3D vectors with smaller angle $\boldsymbol{\theta}$ between them, then their cross product $\mathbf{v} \times \mathbf{w}$ is the 3D vector that: - is orthogonal to both v and w - has direction determined by the righthand rule $\bullet$ has length equal to the area of the parallelogram formed by v and w, i.e.: $$\|\mathbf{v} \times \mathbf{w}\| =$$ Cross products are only for 3D vectors? I wonder why? By "smaller angle" we mean an angle in the range $0 \le \theta \le \pi$ . In words, to execute the righthand rule, curl your fingers in the direction of shortest rotation from **v** to **w**, in which case your thumb is pointing in the direction of the cross product. For any 3D vectors **v** and **w** we have the following properties. Anti–Commutativity: $\mathbf{w} \times \mathbf{v} =$ Self–Annihilating: $\mathbf{v} \times \mathbf{v} =$ Oh dear lord I cannot just change the order of mulitplication like I have been doing my entire dang life? ## **Example 1.** Compute the cross products involving the special vectors: i = j = $\mathbf{k} =$ i, j, k is really physics notation.Mathematicians might prefer e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>. $\mathbf{i} \times \mathbf{j} =$ $\mathbf{i} \times \mathbf{k} =$ $\mathbf{j} \times \mathbf{k} =$ $\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) =$ $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} =$ Oh my god. You **cannot** freely move parentheses around? That's SO messed up. This is referred to as the **failure** of associativity: $(\mathbf{v} \times \mathbf{w}) \times \mathbf{r} \neq \mathbf{v} \times (\mathbf{w} \times \mathbf{r})$ . Associativity is all about moving parentheses around. Next use the idea that any 3D vec can be written in terms of these special vecs: $$\langle a, b, c \rangle =$$ along with the new properties in the margin to find: $$\langle 1, 2, 0 \rangle \times \langle 2, 0, 0 \rangle$$ distributivity: $$\begin{split} &(\mathbf{v}+\mathbf{w})\times\mathbf{r}=\mathbf{v}\times\mathbf{r}+\mathbf{w}\times\mathbf{r}\\ &\mathbf{v}\times(\mathbf{w}+\mathbf{r})=\mathbf{v}\times\mathbf{w}+\mathbf{v}\times\mathbf{r}\\ &\text{commutativity with scalars:}\\ &(c\mathbf{v})\times\mathbf{w}=\mathbf{v}\times(c\mathbf{w})=c(\mathbf{v}\times\mathbf{w}) \end{split}$$ ## B. Computing Cross Products. So far cross-products seem tough to compute. The cross–product $\langle a_1, a_2, a_3 \rangle \times \langle b_1, b_2, b_3 \rangle$ equals the **determinant**: $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ which means it equals: Is there not a magic formula? We call a rectangular array of entries a matrix. The determinant of a 2 by 2 matrix is: $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$ and this is what we are computing thrice as part of calculating the cross product. Find a nonzero vector orthogonal to both $\mathbf{v} = \langle 2, -1, 1 \rangle$ and $\mathbf{w} = \langle -3, -1, 2 \rangle$ . From now on, if you ever need a vector orthogonal to two other 3D vectors, cross products better leap into your mind! C. **Scalar Triple Product.** The cross product and dot product do not have to operate in isolation. We can execute them in succession: The scalar triple product of 3D vectors **v**, **w**, **r** is: $$\mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) = \langle v_1, v_2, v_3 \rangle \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ w_1 & w_2 & w_3 \\ r_1 & r_2 & r_3 \end{vmatrix} = \begin{vmatrix} w_1 & w_2 & w_3 \\ r_1 & r_2 & r_3 \end{vmatrix}$$ Underlying the last equality is that: $$\mathbf{v} \cdot \mathbf{i} = \langle v_1, v_2, v_3 \rangle \cdot \langle 1, 0, 0 \rangle = v_1$$ $$\mathbf{v} \cdot \mathbf{j} = \langle v_1, v_2, v_3 \rangle \cdot \langle 0, 1, 0 \rangle = v_2$$ $$\mathbf{v} \cdot \mathbf{k} = \langle v_1, v_2, v_3 \rangle \cdot \langle 0, 0, 1 \rangle = v_3$$ It has an important geometric meaning. Each pair of vectors from **v**, **w**, **r** forms a parallelogram, and together they form an object called a **parallelepiped**. Say that three times fast. You can think of it as a slanted cube. Then: $$\mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) =$$ The parallelepiped formed by **v**, **w**, **r** has **signed volume** equal to their scalar triple product. A signed volume can be negative, specifically in this case if the shortest angle between $\mathbf{v}$ and $\mathbf{w} \times \mathbf{r}$ is more than 90° in magnitude. **Example 2.** Find the volume of the parallelepiped with vertex A(1,0,3) adjacent to vertices B(2,2,6), C(5,5,9), D(8,8,13). This is probably not even close to how this parallelepiped actually looks in xyz-space. Nonetheless we make a sketch because it helps organize our thoughts. And god knows I need help with that.