Lecture 6. A3 — Curves and Surfaces.

A. Cylinders and Slices. Planes are examples of surfaces, specifically they are
surfaces defined by an equation involving a linear function of two variables. A
quadric surface is defined by an equation involving a degree 2 polynomial of two

variables.

For example the equation x? + z* = 1 defines the circular cylinder:
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A polynomial is a sum of terms, each of
which looks like a scalar times some
variables, like 2x + 3xy + 5x?y. The
degree is related to the maximum number
of variables that are multiplied together.
For example the above polynomial has
degree 3 because of the term 5x*y = 5xxy
which has 3 variables multiplied together.

Remember, an equation defines a surface
by giving you a rule to assess whether or
not a point (x,y, z) is on the surface. In
this case the rule is x* + z> = 1. Hence
(1,2,0) is on the surface, because

12+ 02 =1, but (1,2,1) is not on the
surface, because 12 + 12 # 1.

In this case, the equation of the y = c slice
is x> +z = 1, independent of the constant
c. Therefore this surface has
y-translational symmetry, meaning you
can take any point on the surface, then
translate it in the y-direction (in the
picture this would be left/right), and you
will still be on the surface!

A [your-favorite-curve] cylinder is a
surface obtained from taking
[your-favorite-curve] and translating it in
one direction. Hence this cylinder is a
circular cylinder. But you could have a
paraboliccylinder (translate a parablola)
or an elliptic cylinder (translate an
ellipse) and so on. See discussion for
details.
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B. Paraboloids. We next look at the equation z = x? + y? and consider its z = c,

y = ¢, and x = c slices.
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We put these together to obtain the surface it defines, which we call an upwards

paraboloid.
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Making this sketch was time consuming.
Very. Time-consuming.
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C. Saddles. And now the equation z = x? —y? and its slices.

We put these together to obtain the surface it defines, which is technically called
a hyperboloic paraboloid but is informally referred to as a saddle.

Can you imagine a little dude mounting
this saddle on his little horse? Drawing

this, again achieving some level of

accuracy, was extraordinarily

time-consuming. I wish I was an artist.
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D. Spheres and Hyperboloids. The unit sphere is defined by the equation:

X2 +y?+z2 =1
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3 The equation x* +y~ +z° = 1 is saying

i sSpwnere .
_______ S ¥ that the distance square of (x,y,z) from
’ i : the origin is 1, which is why we obtain
' > the unit sphere.

What if we change some of the signs in the lefthand side of the equation that
defines the unit sphere? If 1 sign on the lefthand side of the sphere equation is
flipped negative, as with:

x2+y2—22:1

we obtain the hyperboloid of 1-sheet:
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hypeiooloid of I -sheet
Its vertical slices are (usually) hyperbolas,
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\ / and its horizontal slices are circles.

If 2 signs on the lefthand side of the sphere equation are flipped negative, as with:
—x? —y* 422 =1

we obtain the hyperboloid of 2-sheets:
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AL R Ny Its vertical slices are hyperbolas, and its
horizontal slices are (usually) circles. But
bypernaloid of 1 -sheets why does it not intersect the xy-plane?
What happens if you set z = 0 in the
equation? Compare this to setting z = 0 in
— s the equation above of the hyperboloid of

1-sheet.
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E. Graphical Operations. Surfaces can be stretched, shrunk, translated, and re-

flected. For example let us talk about the ellipsoid defined by:
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in relation to the unit sphere x* +y? + z% = 1. Let’s do it using desmos3D.

Here  refers to one of the variables: x, y, or z.

change made to * in equation | change made to surface

*
* = scale by factor of a in the x direction
* = x—a translate by a in the x direction
* 4> *' reflect across plane x = x’

We are now ready to discuss a classification of quadric surfaces.

The names of the non-degenerate quadric surfaces are listed below. A
surface has that name if it can be converted to the listed standard form
through rotations and reflections.

Surface: Standard Form Notes on Standard Form
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z—axis of symmetry
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1-sheeted _h\?2 _k\?2 —\?
hyperboloid: (X h) +<ybk> <Z 6) =1

compactly: ®% + 42 —22 =1

2—-sheeted N2 1\ 2 AN
hyperboloid: — (X ah> - (Ubk) + <7“ - 2) =1

2 positive, 1 negative

opens in z-directions

N

compactly: —%% — {2 +22 =1 2 negative, 1 positive

Desmos3D is a great resource if you
would like to view a surface from
multiple perspectives.

Note the general rule: the effect on the
variable in the equation is the reverse of
the effect on the surface. For example,
replacing x with 3 in the equation will
actually stretch the surface by a factor of 2

Remember, a quadric surface is defined
by an equation involving a two-variable
polynomial of degree 2.

You are not expected to know what
non-degenerate means here. I am just
using it to group an important list of
surfaces. The cylinder from the very start
is an example of a degenerate quadric
surface.

You will see a few degenerate quadric
surfaces in discussion, one of which is the
(elliptic) cone which has standard form:
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https://www.desmos.com/3d/l7bfcizl9b
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Example 1. Classify the surface defined by the equation by converting it to stan-
dard form, up to swapping of variables.

4x? —16y? + 22 =16
This is a warning not to be too attached to
merely counting the signs on one side of
the equation without sparing a moment to
think about the other side!

(x+3)*—y+z2=1
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