
Lecture 9. A4 – Multivariable Functions, Partial Derivatives, and Tangent Planes.

Example 1. Let f(x, y, z) = y2 sin(x) + ez and find: Even when there are more variables, to
calculate ∂f

∂⋆
you should treat all other

variables as constants and take a
derivative with respect to ⋆.

∂f

∂x
= fx(x, y, z) =

∂f

∂y
= fy(x, y, z) =

∂f

∂z
= fz(x, y, z) =
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A. Tangent Planes. The tangent vectors to z = f(x, y) at (a, b) together form a
plane called the tangent plane:

Remember we had calculated the
x–tangent and y–tangent vectors to be:

x–tangent: ⟨1, 0, fx⟩

y–tangent: ⟨0, 1, fy⟩

and therefore a normal vector to the tangent plane is:

n =
[
x–tangent at (a, b)

]
×

[
y–tangent at (a, b)

]
=

The tangent plane to the z = f(x, y) at x = a and y = b is defined by:

The equation for a plane with normal n
through point P has equation:

n · (x− p) = 0

To concoct the equation for the tangent
plane we used:

n = ⟨−fx(a, b),−fy(a, b), 1⟩

P = (a, b, f(a, b))

then computed the dot product, and
moved things around a little.

When we zoom in to the point of tangency of the tangent plane, we see that the
tangent plane is a good approximation for the surface, at least for x and y near
x = a and y = b.

The linear approximation for f(x, y) that is suitable near x = a and y = b is:

L(x, y) =

We use the word linear because the
tangent plane is defined by a linear
equation. And this linear approximation
is literally the same as the tangent plane,
or more precisely, the graph of the linear
approximation is the tangent plane. In
other words, you find the linear
approximation by solving for z in the
equation of the tangent plane.
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Example 2. Both parts relate to the function f(x, y) = ye2xy.

(a) Find an equation for the tangent plane to z = f(x, y) at the point (0, 1, 1). For this exact function we calculated
fx(0, 1) = 2 and fy(0, 1) = 1 in an earlier
example.

(b) Use part a and a linear approximation to find a rational number estimate for:

0.9e0.18

A rational number is number that equals
a fraction of integers. An integer is in the
infinite list 0,±1,±2, . . .
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B. Higher-Order Derivatives. There is nothing stopping us from taking repeated
partial derivatives.

And if there is nothing stopping us, then
why should we stop. Just keep at it until
you draw your concluding breath on this
small planet.

f = xy2 + ey

fx =
∂f

∂x
=

fy =
∂f

∂y
=

fxx =
∂2f

∂x2
=

fxy =
∂2f

∂y∂x
=

fyx =
∂2f

∂x∂y
=

fyy =
∂2f

∂y2
=

Clairaut’s Theorem: Where a function has continuous partial derivatives of
all orders, the order in which we execute partial differentiation does not mat-
ter.

The order of a hihger-order partial
derivative is the number of ∂/∂⋆’s it took
to get you there. So ∂2f/(∂x∂y) is a
2nd-order partial derivative.

Virtually every function we encounter in
this course will have continuous partial
derivatives of all orders, at least where its
partial derivatives of all orders are
defined. So you can apply Clairaut’s
Theorem without further comment.

We have not even really talked about
continuity of multivariable functions, so
you are certainly not expected to verify it.
You may just assume that we are working
with nice-enough functions that, when
you need Clairaut’s Theorem, you may
apply it. :)

So for example:

fyyx =
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Example 3. Find fxyzzyxz(x, y, z) where: Only try a direct approach if you like the
idea of self-inflicted pain.

f(x, y, z) =
z2exy

2+sin(x+y)

x
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