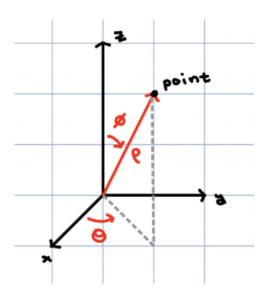
A. Spherical Coordinates. There is another coordinate system that is excellent for objects that are symmetric about the origin, like spheres centered at the origin. These are the spherical coordinates ρ , ϕ , and θ . The spherical coordinate θ is the ρ is read "roe" and ϕ is read "fee". same as the cylindrical coordinate.



Because of the way spherical coordiantes are defined, if ρ is nonnegative, then it equals the distance of the point from the origin.

The point with spherical coordinates ρ , ϕ , and θ has position vector obtained by rotating the vector $(0,0,\rho)$ down by angle ϕ in the vertical half-plane at angle θ . Every point can be described using coordinates in the range:

 $\rho \geqslant$

 $\leq \theta \leq$

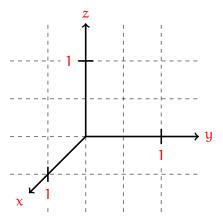
 $\leq \varphi \leq$

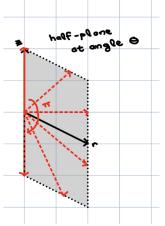
sketched these level sets when we first introduced cylindrical coordinate. Every vertical half-plane can be described

Specifically: the vertical half-plane is the level set of θ assuming that $r \ge 0$. We

by θ in the range 0 to 2π . Every ray in that half-plane can be described by an angle ϕ down from the z-axis in range 0 to π .

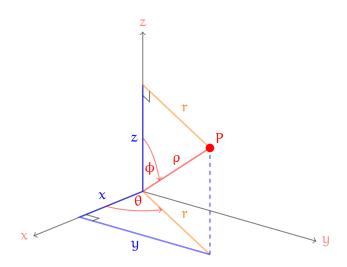
For example we sketch the surface δ defined by $\rho = 1$, $0 \leqslant \varphi \leqslant \frac{\pi}{2}$, $0 \leqslant \theta \leqslant \frac{\pi}{2}$.





On a sphere, the coordinates ϕ and θ are analgous to latitude and longitude.

B. **Spherical Conversion.** We develop algebraic relationships between spherical coordinates and the other coordinate systems.



The two triangles formed by ϕ and by θ in this picture contain all the relations we describe below.

[Spherical ↔ Cylindrical] and [Spherical ↔ Standard]

- **r** in terms of spherical coordinates:
- **x** in terms of spherical coordinates:
- y in terms of spherical coordinates:
- **z** in terms of spherical coordinates:

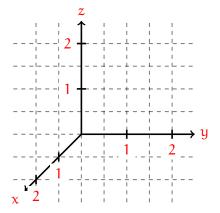
relation between ρ and standard/cylindrical coordinates:

relation between ϕ and standard/cylindrical coordinates:

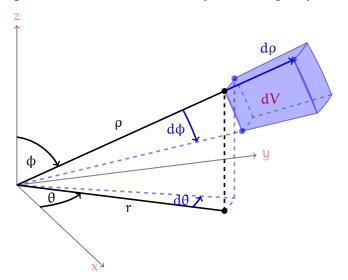
Example 1. Convert the cylindrical equation:

$$z = \sqrt{3}r$$

into a spherical equation, and sketch this surface assuming $r \ge 0$.



C. **Spherical Integration.** Now we will discuss integration in spherical coordinates. Imagine the infinitesimal bit of volume dV obtained from the point with spherical coordinates ρ , ϕ , θ by increasing ρ by $d\rho$, ϕ by $d\phi$, and θ by $d\theta$.



The goal in this process is to try to understand how small changes $d\rho$, $d\varphi$, and $d\theta$ are related to small changes dV in volume. This dV is exactly what appears in triple–integration.

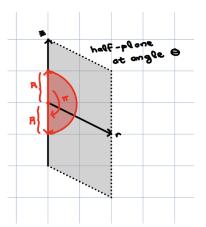
For example, we know that small changes dr, $d\theta$, dz effect the change $dV = r dr d\theta dz$ in volume.

In spherical coordinates:

$$dV =$$

Example 2. Use spherical coordinates to derive the volume of a radius R sphere: $x^2 + y^2 + z^2 \le R^2$

To describe a solid sphere of radius R centered at the origin, the section of the sphere in each vertical half–plane at angle θ from 0 to 2π is traced out by rotating the line segment from (0,0,0) to (0,0,R) down from angle 0 to angle π .



Example 3. Let E be the region outside the cone $z = \sqrt{x^2 + y^2}$ and inside the upper hemisphere of the sphere $x^2 + y^2 + z^2 \le 1$. Find:

$$\iiint_E \frac{1}{\sqrt{x^2 + y^2 + z^2}} \ dV$$

The upper hemisphere of this sphere, which is centered at the origin, consists of the half of the sphere above the xy-plane.

