Lecture 25. C2 — Scalar and Vector Line Integrals.

A. Arclength. If we add up all the infinitesimal bits of arclength, then we simply
get the length of the path.

The arclength of a path r(t)witha <t <bis: Specifically, if r(t) indicates the position
of a particle at time t, then the arclength

is the distance travelled by the particle.

Example 1. Find the arclength of the path:

r(t) = (cos(2t),sin(2t),t) with 0 < t < 27
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B. Vector Fields. Imagine water flowing in the plane. At each point in the plane
of water, you can indicate the velocity of water flow at that point.
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This is called a vector field. This one is specifically described by the function:
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Generally a vector field is a function F(x)

—y

where the inputs and outputs are both
F(x,y) = Z(x,g} p tp

vectors of the same dimension. The vector
field sketched here is two—-dimensional. A

Then input (x,y) is sketched as the root of the vector, while the output ; (x,y) is function like F(x,y,z) = ;(x,y,2) is an

sketched as the vector itself analagous three-dimensional vector field.
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Example 2. Sketch the vector field.

1
@) Blxy) = 5(1,1)
Y
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1 Th is th lockwi
(b) F(x,y) = 5 (—y,x) e vector (—y, x) is the counterclockwise
rotation of the vector (x,y) by 90 degrees.
It is easy to see that this pair of vectors is
) ) }{ . . orthogonal, by verifing their dot pdoruct
SRR IR 4. is 0.
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C. Vector Line Integrals. We will next talk about vector field line integrals. Con-
sider this path r(t) in a fluid velocity vector field F.

N

1 1 1 1 | « 1 1 1

1 1 1 1 ¢ 1 1 1 1
—— - - - - - — - — T - — - ———P-—-=—-—-9 - -

1 1 1 & 1 1 1 1 1

1 [ 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 f 1 1 | |
iy, duliniinly’. dialiniinl— alinliyi~—, il wumy Saliniiniind dialiniiai a2l Sl

1 1 1 “ 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 < ! 1 1 1
Bl ey R e e e Bl $- - -

d d I i 1 1 1

1 1 1 1 1 1 A

1 1 1 1 1 N 1

1 1 1 1 ol | |
S N7 S ) S A ¥ N R

d d 1 L4 1 1

1 1 1 1 1 1 1

1 i 1 1 1 A r(t)l

A} 1 1 1 A 1 1

+ + A7 * + + -

| | | T 1 1 h 14

| | T 1 1 1 1 1

! T 1 1 1 1 1 1

1 1 | 1 A ) i |
ainlh (ininiad Galiaiai Sinininlis viniilh Colaiaiial 4 il St Sl

! 1 1y 1 1 1 1 1

1 1Yy 1 1 1 1 1 1

1y 1 1 1 1 1 1 1
Bl el B e e S o S A T £

I ! 1 T~ I 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 y 1 1 1
gy R T WY SRS T Ay g

1 1 1 1 > 1 1 1 1

1 1 1 > 1 1 1 . 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
—— R R - P T - F - - -—--¥--

1 1 1 1 1 1 1 1

1 1 ! 1 1 1 1 1

We will attempt to measure the rate of fluid flowing along the curve. At each seg-
ment dr along the curve we measure the rate of fluid flowing along that segment.

F

L1
comp 4 F

[rate of fluid flow F along r] =

The the vector line integral of F along path r(t) with a <t < b is:

[F-dr:

This rate will be measured in [units of
area] per [unit of time]. Along each
infinitesimal segment dr of the curve, the
rate of fluid flowing is obtained by
multiplying the velocity of the fluid, in
[units of length] per [units of time], by the
length ds of water along that segment.

Here dr = r/(t) dt is the vector
representing an infitesimal change in
position along the curve. Its length is the
arclength: ||dr|| = ds.

Remember that the formula for the
component of vector w along vector v is
comp, (w) = (v-w)/|v]

An alternative notation for the vector line
integral uses ds (boldface s here) instead
of dr. It looks like [, F - ds.
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Example 3. Using the vector field F sketched below, decide whether the integral
is positive, negative, or zero.
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Technically we need to select a
parametrization in order to execute the
F.dr— vector line integral, but as we mention
Je, below the choice of parametrization does
X not matter, except for the orientation.
F.dr =
Je,
F.dr =
ues

If the orientation of the curve involved

vector line integral is reversed, then the

An orientation of a curve is a choice of direction along the curve. value of the line integral has its sign
flipped. Beyond orientation, the value of a

vector line integral does not depend on
the parametrization of the curve.

This is distinguished from scalar line
integrals, where orientation does not
matter.
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