Lecture 28. This page: C3 — Conservative Fields. Later...C4.

Example 1. For each vector field F, decide whether curl F(P) is 0, points into the
page, or points out of the page.
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A. Curl and Conservative Vector Fields. Let’s calculate curl of a gradient:

curl Vf(x,y,z) =

Every conservative vector field is irrotational, meaning: curl F =

We use this idea to show that the following vector field is not conservative:

F(wa) - <_U»X>

Technically the vector field F should be
continuously differentiable for this to
hold. This is because it relies on the
Clairaut’s theorem, which concludes that
the order of partial differentation does not
matter, under certain simple assumptions.

For a two—dimensional vector field:

F(X»U) = <Pa Q>

to compute the curl we treat the third
component as 0, and thus:

curl F(x,y) = curl (P, Q) = (Qx — Py)k

so that a two—dimensional vector field is
irrotational if and only if:

Qx =Py
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Example 2. Show that the following vector field is irrotational: Recall the simplified formula for curl of a
. . two—dimensional vector field:
F(x,y) = “yrtx
XYy) = 2 1 yz curl F(x,y) = curl (P, Q) = (Qx — Py)k

The vector field to the left was the
interesting vector field we had explored
before. We found it is not conservative,
because it did not have path-independent
line integrals, as its line integral over the
counterclockwise unit circle was not zero,
it was 27t! Remember that conservative
vector fields are supposed to integrate to
0 over closed curves. Anyways. .. this
vector field is the classic example of a
vector field that is irrotational, but not
conservative. Scary.
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B. Simple—Connectedness. The previous example showcased how an irrotational
vector field is not necessarily conservative. Preventing us from guaranteeing the
conservativity is the type of region on which the vector field is defined.

—yi+xj

The vector field F(x,y) = — ) is defined and irrotational on the region:
y
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A region is simply-connected if every closed curve in that region can be
continuosly deformed within the region to a point in that region.

Is the region below simply—connected?

Simply-Connected And Irrotational — Conservative.
If F is defined and irrotational on a simply—connected region, then F is guar-
anteed to be conservative on that region.

Path—independent line integrals for an

irrotational vector field on a particular
region is only guaranteed among paths
that can be continuously deformed to

one another while maintaining fixed

endpoints and remaining with the region.

As a consequence, an irrotational vector
field on a region is only guaranteed to
have vanishing line integral on closed
curve that can be continuously deformed
to a point while remaining within the

region.

The idea behind continuous deformation
is deforming the curve via bending,
stretching, and shortening, but without
cutting or gluing!

In a simplified but imprecise sense, a
two-dimensional region is
simply—connected if it contains no holes.
This interpretation does not apply for

three-dimensional regions.

The idea behind this result is that, in a
simply—connected region, every closed
curve can be continously deformed to a
point, and so by earlier margin notes, the
irrotational vector field will have
vanishing line integral over that curve. So
the vector field will have vanishing line
integral over every closed curve. This
turns out to be enough to guarantee
path—independence of line integrals,
which is enough to guarantee the vector
field is conservative.
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Example 3. Let C be the curve in the xy—plane sketched below and find: The set all points in the xy—plane is called

. R? and is simply—connected. The set of all
E{[; es(e") dx + sin(sin(e®"Y)) dy points in xyz-space is called R? and is
¢ also simply—connected.
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C. Parametrized Surfaces. We have engaged with curves for a while now. We One example of a surface is a plane, with
now upgrade dimension and consider surfaces. We parametrize a surface § using Wwhich we have in fact played around.

a vector-valued function R(u,v) of two parameters u and v, where those param-

eters come from a specified parameter region D in the uv—plane.
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Our next task is to locate tangent and normal vectors to the surface.
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A choice of direction for normals to the surface is called an orientation for
the surface.
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Here the partial derivatives R,, and R,
are tangent to the u—curves and v—curves
respectively. To obtain a normal to the
surface you would utilize a cross—product
of tangent vectors.

Curves have an orientation, and so too do
surfaces. In the picture of 8 at the top of
the page, the cross product R,, x R,
determines upwards normals, which
corresponds to an upwards orientation of
the surface.
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Example 4. Consider cylinder § given by x? +y? = 1 with 0 < z < 2and x,y > 0.

z

T

N y

(a) Parametrize S.

We will use an appropriate pair of
cylindrical coordinates.

(b) Find a normal to § at the point with coordinates 0 and z, and describe the
corresponding orientation.
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D. Surface Area. If we can parametrize a surface § with parametrization R(u,v)

with a parameter region D, then its surface area is within reach.
An infinitesimal of surface area can be

described using a parallelogram, with

nfinitesimal sides given by an infitesimal bit of

v dv as it of arclength along the u—curve and v—curve
suwiface orea

=13

respectively. And of course, we cannot

forget that one way to compute the area
R wda of a parallelogram formed by two vectors

is to take the compute the length of their

cross—product!

The surface area of a parametrized surface is:

Example 5. Find the surface area of the portion of the cone z = /x? + y? with
0<z<2. We will use a pair of cylindrical
coordinates to parametrize the cone.

x Y Generally, if we parametrize graph
z = f(r) using parameters r and 6, then:

dS =r/(f'(v))2 + 1 drd®
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