

Name: _____ Student ID: _____

Directions. Fill out your name and student ID number on the lines above **right now** before starting the exam! Also, check the box next to the class for which you are registered.

 9am Haskell 11am Tokorcheck 2pm Reardon 10am Haskell 12pm Tokorcheck

- **You must show all your work and justify your methods to obtain full credit.** Do not use scratch paper; if more space is needed, use the extra page provided on the back of the test. If you write on this page, let the grader know that there is work to be found there by writing the page number where it says “MY SOLUTION CONTINUES ON PAGE _____”
- Do not write outside the margins.
- Simplify your answers to a reasonable degree. Any fraction should be written in lowest terms. Known trig identities should be simplified. You need not evaluate expressions such as $\ln 5$, $e^{0.7}$ or $\sqrt{226}$.
- No calculators are allowed. **Turn off your cell phone.**
- You may use the sheet of notes that you brought with you, this may be no more than one sheet of $8\frac{1}{2} \times 11$ ” paper. You may have anything written on it (on both sides), but it must be written in your own handwriting.
- Remember, USC considers cheating to be a serious offense; the minimum penalty is failure for the course. Cheating includes “straying eyes” and failing to stop writing when told to do so at the end of the exam.

1 (14 pts)	2 (12 pts)
3 (10 pts)	4 (10 pts)
5 (10 pts)	6 (10 pts)
7 (10 pts)	8 (12 pts)
9 (20 pts)	10 (12 pts)

120 points total

Question 1. Consider the four surfaces

$$\mathcal{S}_1 : 3x + 4y - 5z = 1$$

$$\mathcal{S}_3 : z = \sqrt{x^2 + y^2}$$

$$\mathcal{S}_2 : x - y + 5z = 2$$

$$\mathcal{S}_4 : (x - 1)^2 + y^2 = 1$$

(a) Indicate if each statement is True or False. Briefly justify your answer.

True False

(A) The surfaces \mathcal{S}_1 and \mathcal{S}_2 intersect at a line.

Justification:

True False

(B) The surface \mathcal{S}_3 is an upward paraboloid centered at the origin.

Justification:

True False

(C) The surface \mathcal{S}_4 is a cylinder of radius 1.

Justification:

True False

(D) The surface \mathcal{S}_2 is tangent to \mathcal{S}_4 .

Justification:

True False

(E) The surface \mathcal{S}_1 contains the line $x = 2t - 1, y = t + 1, z = 2t$

Justification:

(b) Find a parameterization $\mathbf{r}(t)$ for the curve of intersection of \mathcal{S}_3 and \mathcal{S}_4 . **Be sure to include a range for t .**

MY SOLUTION CONTINUES ON PAGE _____

Question 2. Let $f(x, y) = 2y + \cos \pi x - \sqrt{x}$. Consider the point $P = (4, -1)$.

(a) In which direction does f increase the fastest starting from P ?

(b) Find the rate of change of f at P in the direction of $\frac{4}{5}\hat{\mathbf{i}} + \frac{3}{5}\hat{\mathbf{j}}$.

(c) Find an equation of the tangent plane of f at P .

(d) Use linear approximation to estimate the value of f at $Q = (4.4, -1.1)$.

(e) Suppose also that $x = -4s \cos t$ and $y = se^{2t}$. Find $\frac{\partial f}{\partial s}$ at $(s, t) = (-1, 0)$.

MY SOLUTION CONTINUES ON PAGE _____

Question 3. Find the critical points of $f(x, y)$ and classify each one as a local maximum, local minimum, or saddle point where

$$f(x, y) = xy + \frac{16}{x} + \frac{4}{y}, \quad x > 0, \quad y > 0$$

MY SOLUTION CONTINUES ON PAGE _____

Question 4. Find $\int_0^2 \int_{y^2}^4 \frac{ye^x}{x} dx dy$

MY SOLUTION CONTINUES ON PAGE _____

Question 5. Evaluate the following integral over the region D bounded by the lines $x+y = 2$, $x+y = -1$, $x-y = 1$, and $x-y = -1$:

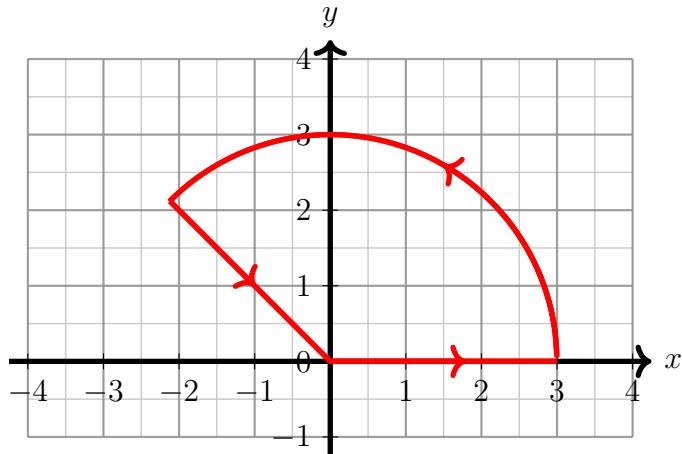
$$\iint_D 3(x+y)e^{(x-y)} \, dx \, dy.$$

MY SOLUTION CONTINUES ON PAGE _____

Question 6. Compute

$$\int_C (y^2 + xe^x) \, dx + (x^2y + 2xy + \sin(y^2)) \, dy$$

where C is the counterclockwise oriented piecewise curve comprised of $y = \sqrt{9 - x^2}$, $y = -x$, and $y = 0$ as shown in the graph below.



MY SOLUTION CONTINUES ON PAGE _____

Question 7. Consider the vector field \mathbf{F} and curve C given by

$$\begin{aligned}\mathbf{F}(x, y, z) &= \langle e^x, -\cos z, y \sin z \rangle \\ \mathbf{r}(t) &= \langle \sin t, t \cos t, t \rangle, \quad 0 \leq t \leq 4\pi.\end{aligned}$$

(a) Is the vector field \mathbf{F} conservative? If so, find a potential function f such that $\mathbf{F} = \nabla f$.
If not, explain why it is not.

(b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

MY SOLUTION CONTINUES ON PAGE _____

Question 8. Consider the vector field

$$\mathbf{F}(x, y, z) = \langle e^z, x + z, e^{xy+z} \rangle$$

and the goldfish bowl surface S given by

$$x^2 + y^2 + (z + 1)^2 = 2 \quad \text{and} \quad z \leq 0$$

oriented so that the normal points from inside the bowl to outside the bowl. Calculate

$$\iint_S \text{Curl } \mathbf{F} \cdot d\mathbf{S}.$$

MY SOLUTION CONTINUES ON PAGE _____

Question 9. Consider the surface S defined by the equation

$$z = 1 + x^2 + 2y$$

and where (x, y) lies in the triangle in the plane with vertices $(0, 0)$, $(1, 0)$ and $(1, 2)$.

(a) Find the surface area of S .

MY SOLUTION CONTINUES ON PAGE _____

Question 9. (CONTINUED) Recall the surface S from (a) defined by the equation

$$z = 1 + x^2 + 2y$$

and where (x, y) lies in the triangle in the plane with vertices $(0, 0)$, $(1, 0)$ and $(1, 2)$.

(b) Consider the vector field $\mathbf{F}(x, y, z) = \langle x, 1, x + 2z \rangle$. Find the flux of \mathbf{F} across S , oriented upwards in the direction of increasing z .

MY SOLUTION CONTINUES ON PAGE _____

Question 10. Suppose that T is the solid tetrahedron cut from the first octant by the plane $4x + 2y + z = 4$, and let S be its two-dimensional boundary. Let \mathbf{F} be the vector field

$$\mathbf{F}(x, y, z) = (x + z)\hat{\mathbf{i}} - xy\hat{\mathbf{j}} + y\hat{\mathbf{k}}.$$

Calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ with S oriented out, away from the interior of T .

MY SOLUTION CONTINUES ON PAGE _____