
Lecture 5. A3 – Homogenous Linear Second-Order Differential Equations.

A. Linear Second–Order Differential Equations.

A differential equation is second–order linear if it can be put into form:

and is further homogeneous if:

Remember second–order means only up
to the second derivative appears. Linear
means y, y ′, y ′′ appear linearly.

We call this form standard form. The
right side f(t) is commonly referred to as
the forcing term.

For the time being we will concentrate on the homogeneous subcategory.

For example:

t2y ′′ + 3ty ′ − 3y = 0

which we verify has among its solutions:

y1 = t

y2 =
1

t3

Functions y1 and y2 are linearly independent if:

Otherwise they are linearly dependent.

A linear combination of y1 and y2 has form:

y =

Linear independence and linear
cominbations are notion from linear
algebra. There is a definition of linear
independence for a list of more than two
functions, but it is a little more
complicated. It requires that no function
in that list is a linear combination of other
functions in that list.

Show that if y1 and y2 solve the homogeneous linear:

y ′′ + p(t)y ′ + q(t)y = 0

then so does any linear combination y = C1y1 + C2y2.

Be careful: this result only applies in the
homogeneous case!

Again: be warned this only applies in the
homogeneous case! And really: added to
the hypotheses should be that the
functions p(t) and q(t) are “nice” in the
sense that they are continuous on the
interval in which the solution is being
considered.

A pair of solutions y1 and y2 to homogeneous 2nd–order linear ODE:

y ′′ + p(t)y ′ + q(t)y = 0

is called fundamental set of solutions if they are:

Theorem: In this case the general solution has form:

y =
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Example 1. Find the solution to the initial value problem:

t2y ′′ + 3ty ′ − 3y = 0 with y(1) = 0 and y ′(1) = 4

using that a fundamental set of solutions y1 = t and y2 =
1

t3
.

Because the general solution involves two
arbitary constants, we need two initial
values to determine an exact solution.
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B. Wronskian.

The Wronskian of function y1 and y2 is:

W(y1, y2) =

This is an example of a determinant:

det

[
a b

c d

]
=

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc

Suppose y1 and y2 are linearly dependent: for example y2 = cy1. Remember: linearly dependent means one
is a constant multiple of the other.

W(y1, cy1) =

Functions y1 and y2 are linearly independent if and only if:

W(y1, y2) ̸=

Really this result is only true for “nice”
functions y1 and y2. Thankfully, the
functions we obtain from solving
homogoneous linear differential equations
are always “nice” enough.

Suppose now that y1 and y2 are solutions to homogeneous:

y ′′ + p(t)y ′ + q(t)y = 0

Show that W = W(y1, y2) satisfies the differential equation:

(lnW) ′ = −p(t)

Abel’s Theorem. If y1 and y2 are solutions to:

y ′′ + p(t)y ′ + q(t)y = 0

then:

W(y1, y2) =

A function of the form Ce[stuff] either
always has value 0 (if C = 0) or never has
value 0 (if C ̸= 0). This is because
exponentials never have value 0.
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Example 2. For the solutions y1 = t and y2 =
1

t3
of the differential equation:

t2y ′′ + 3ty ′ − 3y = 0

compute their Wronskian and confirm Abel’s Theorem.


