A. Constant Coefficients.

We specialize to homogeneous 2nd-order LDEs with constant coefficients:

LDE is shorthand for linear differential equation.

Let us plug in an exponential trial solution:

$$y = e^{\lambda t} \mapsto y'' + py' + qy = 0$$

Trial means we will try it out.

 λ is read "lambda".

The characteristic equation of y'' + py' + qy = 0 is:

and $y=e^{\alpha t}$ is a solution of the differential equation if and only if:

Example 1. Find the general solution to the differential equation:

$$y'' - 3y' + 2y = 0$$

B. **Repeated Roots.** What if the characteristic equation has a repeated root? If $\lambda = \alpha$ is that repeated root then the differential equation has form:

That root only provides solution $y_1 = e^{\alpha t}$. But we have learned that there must be **two** fundamental solutions.

$$(\lambda - \alpha)^2 = \lambda^2 - 2\alpha\lambda + \alpha^2$$

In discussion you will show that if y_1 is one solution then the other is:

$$y_2 = uy_1$$

where:

$$u = \int \frac{e^{-\int p(t) \ dt}}{y_1^2} \ dt$$

In our case with $y_1 = e^{at}$ we find:

This was for the differential equation:

$$y'' + p(t)y' + q(t)y = 0$$

If y'' + py' + qy = 0 has repeated root $\lambda = a$ then fundamental solutions are:

$$y_1 =$$

$$y_2 =$$

Lecture 6. A3 – Homogenous Linear Second-Order Differential Equations.

Example 2. Solve the initial value problem:

$$y'' - 2y' + y = 0$$
 with $y(0) = 1$ and $y'(0) = 0$

C. **Complex Roots.** The equation $\lambda^2 + 1 = 0$ has no real roots. What do we do? As a precursor we discuss the interplay of complex exponentials with trig.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \cdots$$

$$\cos\theta = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots$$

$$\sin\theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots$$

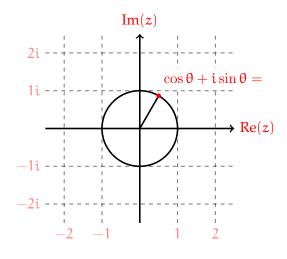
$$e^{i\theta} =$$

These are Taylor series expansions. Calculus II content!

Here \mathbf{i} is the imaginary number: $\mathbf{i}^2 = -1$. So: $\mathbf{i}^3 = \mathbf{i}^2 \mathbf{i} = -\mathbf{i}$ and $\mathbf{i}^4 = \mathbf{i}^2 \mathbf{i}^2 = 1$.

Euler's Identity.

$$e^{i\theta} =$$



This is a picture of the complex plane. You would plot the complex number $\mathbf{a} + \mathbf{bi}$ with coordinates (\mathbf{a}, \mathbf{b}) corresponding to its real and imaginary parts.

Remember that $(\cos \theta, \sin \theta)$ describes the unit circle.

Suppose that the characteristic equation of y'' + py' + qy = 0 has complex roots:

$$\lambda = \alpha + bi$$
 and $\overline{\lambda} = \alpha - bi$

Then its fundamental **complex** solutions are:

Roots of real polynomials always come in complex conjugate pairs z and \overline{z} .

Remember (or simply check) that:

$$\operatorname{Re}(z) = \frac{1}{2}z + \frac{1}{2}\overline{z}$$

$$\operatorname{Im}(z) = \frac{1}{2i}z - \frac{1}{2i}\overline{z}$$

The take away is that the real and imaginary parts of z are linear combinations of z and \overline{z} . And... we know that linear combinations of solutions are also solutions!

Continuing... the complex roots $\lambda = \alpha \pm bi$ yield fundamental **real** solutions:

Example 3. Find the general solution to y'' - 6y' + 13y = 0.