A. **Harmonic Motion.** We consider a mass m hanging from a spring so that y measures the displacement down from equilibrium.

We may also be provided an initial position $y(t_0)$ and an initial velocity $y'(t_0)$ as depicted.

Spring constant k measures the stiffness of the spring.

By **Hooke's law** the combination of the restoring force of the spring and the force due to gravity is:

Damping constant μ measures the resistance to motion of the medium (e.g. air). The motion–resisting force due to damping is:

By Newton's second law:

Hooke's law says that the restoring force of the spring at displacement x from **weightless** equilibrium equals kx.

Newton's second law says that the total force acting on an object equals its mass times its acceleration.

Harmonic Motion with No External Force.

Example 1. A 10 kg mass is hanging from a spring with spring constant 50 kg/s^2 and is placed in a viscous medium that provides a damping constant 20 kg/s. The mass is held still 2 m down from equilibrium, and at time t = 0 is released. Find a formula for its displacement y(t) down from equilibrium at time t sec.