A.	Deriva	tive ii	n Time	Domain.	Find:

$$\mathcal{L}\{y^{\,\prime}(t)\}(s) =$$

The fact that:

$$\lim_{t \to \infty} e^{-st} f(t) = 0$$

is part of the requirement that the improper integral be defined, since $e^{-st}f(t)$ is the integrand. If this were not so then the improper integral would yield infinite area.

$$\mathcal{L}(y'')(s) =$$

Laplace Transform of Derivative.

Let Y be the Laplace transform of y(t). Then:

$$\mathcal{L}\left(y^{(n)}\right)(s) =$$

Example 1. Find the Laplace transform Y of the solution to the IVP:

$$y'' - 3y' - 10y = 2$$
 with $y(0) = 1$ and $y'(0) = 2$

B. Inverse Laplace Transforms.

Definition. If $\mathcal{L}(f) = F$ then the **inverse Laplace** of F is:

That this can be defined is tied to the fact that the Laplace transform is one-to-one, meaning distinct function have distinct Laplace transforms.

Linearity. Like the Laplace transform, its inverse is linear:

$$\mathcal{L}^{-1}\left(\alpha F+bG\right)=$$

Here a and b represent constants.

To find the inverse Laplace it will help to have on hand the following table.

Table of Laplace Transforms.

f(t)	$\mathcal{L}\{f(t)\}(s)$
1	$\frac{1}{s}$
t ⁿ	$\frac{n!}{s^{n+1}}$
eat	$\frac{1}{s-a}$
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}}$
cos bt	$\frac{s}{s^2 + b^2}$
sin bt	$\frac{b}{s^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$

Example 2. Find formulas for:

Assuming n is a positive integer and a and b are constant:

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^n}\right\}(t) =$$

$$\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2+b^2}\right\}(t) =$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^2+b^2}\right\}(t) =$$

Recall:

$$\mathcal{L}\{t^n e^{\alpha t}\}(s) = \frac{n!}{(s-\alpha)^{n+1}}$$

$$\mathcal{L}\lbrace e^{\alpha t}\cos bt\rbrace(s) = \frac{s-\alpha}{(s-\alpha)^2+b^2}$$

$$\mathcal{L}\{e^{\alpha t}\sin bt\}(s) = \frac{b}{(s-\alpha)^2 + b^2}$$

Example 3. Calculate:

$$\mathcal{L}^{-1}\left\{\frac{2}{(s+3)^5} + \frac{2s-3}{s^2-2s+5}\right\}(t) =$$

You should have done a MyOpenMath review on completing the square:

$$x^2 + bx = (x + \frac{b}{2})^2 - \frac{b^2}{4}$$

We only apply it here because $s^2 - 2s + 5$ is **irreducible**, meaning it cannot be factored using real numbers. This can be detected by using the quadratic formula.