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A. Derivative in Time Domain. Find:

Lly' ()} (s) =

Lly")(s) =

Laplace Transform of Derivative.

Let Y be the Laplace transform of y(t). Then:

£ (ym) (s) =

Example 1. Find the Laplace transform Y of the solution to the IVP:

y” =3y’ — 10y = 2 with y(0) =1 and y'(0) =2

The fact that:

lim e S'f(t) =0

t—o0

is part of the requirement that the
improper integral be defined, since

e S'f(t) is the integrand. If this were not
so then the improper integral would yield

infinite area.



Lecture 12. This page. B2 — Inverse Laplace Transforms. First page... B1.

B. Inverse Laplace Transforms.

Definition. If £(f) = F then the inverse Laplace of F is:

Linearity. Like the Laplace transform, its inverse is linear:

L (aF + bG) -

To find the inverse Laplace it will help to have on hand the following table.

Table of Laplace Transforms.
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That this can be defined is tied to the fact
that the Laplace transform is one—to-one,
meaning distinct function have distinct

Laplace transforms.

Here a and b represent constants.
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Example 2. Find formulas for:

Assuming n is a positive integer and a and b are constant:

Example 3. Calculate:

2 2s—3
1 -
“ {(s+3)5+sz—25+5}(t)

Recall:
n!

n,at = ——
L{the}(s) = (s — )1

a R
L{e cosbt}(s) = m
L{e* sinbti(s) = S —

= (S — (1)2 4 bZ

You should have done a MyOpenMath
review on completing the square:

x2+bx:[x+g)zf§

We only apply it here because s> — 2s +5
is irreducible, meaning it cannot be

factored using real numbers. This can be
detected by using the quadratic formula.
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