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A. Derivative in Time Domain. Find:

L{y ′(t)}(s) =

The fact that:

lim
t→∞ e−stf(t) = 0

is part of the requirement that the
improper integral be defined, since
e−stf(t) is the integrand. If this were not
so then the improper integral would yield
infinite area.

L(y ′′)(s) =

Laplace Transform of Derivative.

Let Y be the Laplace transform of y(t). Then:

L
(
y(n)

)
(s) =

Example 1. Find the Laplace transform Y of the solution to the IVP:

y ′′ − 3y ′ − 10y = 2 with y(0) = 1 and y ′(0) = 2
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B. Inverse Laplace Transforms.

Definition. If L(f) = F then the inverse Laplace of F is: That this can be defined is tied to the fact
that the Laplace transform is one–to–one,
meaning distinct function have distinct
Laplace transforms.

Linearity. Like the Laplace transform, its inverse is linear:

L−1
(
aF+ bG

)
=

Here a and b represent constants.

To find the inverse Laplace it will help to have on hand the following table.

Table of Laplace Transforms.

f(t) L{f(t)}(s)

1
1

s

tn
n!

sn+1

eat
1

s− a

tneat
n!

(s− a)n+1

cosbt
s

s2 + b2

sinbt
b

s2 + b2

eat cosbt
s− a

(s− a)2 + b2

eat sinbt
b

(s− a)2 + b2
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Example 2. Find formulas for:

Assuming n is a positive integer and a and b are constant:

L−1

{
1

(s− a)n

}
(t) =

L−1

{
s− a

(s− a)2 + b2

}
(t) =

L−1

{
1

(s− a)2 + b2

}
(t) =

Recall:

L{tneat}(s) =
n!

(s− a)n+1

L{eat cosbt}(s) =
s− a

(s− a)2 + b2

L{eat sinbt}(s) =
b

(s− a)2 + b2

Example 3. Calculate:

L−1

{
2

(s+ 3)5
+

2s− 3

s2 − 2s+ 5

}
(t) =

You should have done a MyOpenMath
review on completing the square:

x2 + bx = (x+ b
2
)2 − b2

4

We only apply it here because s2 − 2s+ 5

is irreducible, meaning it cannot be
factored using real numbers. This can be
detected by using the quadratic formula.
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