Lecture 17. B3 — Laplace Transforms of Discontinuous Functions.

A. Periodic. Consider a periodic function f(t) with period T.
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Its window is the pulse: f1(t) =

Hfr(t)
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Here is an optional derivation of the formula we will use:
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Periodic Laplace. If f(t) is periodic with window f(t) then:

L{t(t)}(s) =

To have period T means T is the smallest
number so that f(t + T) = f(t) for all t.

We divide the integral into periods.

Here we think of the segment of f(t) from
nT tonT + T as the shift by nT of the

window fr(t).

Here we execute u—substitution
u =t —nT and simplify.

Here we note:
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and we call this Fy(s). Then we simplify
using the geometric sum formula:
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Lecture 17. B3 — Laplace Transforms of Discontinuous Functions.

Example 1. Find the Laplace transform of the periodic function f(t) graphed
below.

Recall that the pulse of a function f(t)
from a < t < b equals:

[Ha(t) —He (t)] - £(t)

Recall the formulas:
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Recall the periodic formula:

cife) = T
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