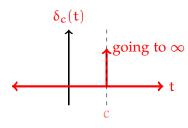
A. Dirac Delta Function.

Intuitively the **dirac delta function** is defind by:

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

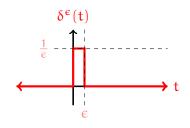
and so its shift right by c is:

$$\delta_{c}(t) = \delta(t-c) = \begin{cases} \\ \end{cases}$$



More precisely $\delta(t)$ is defined to be the limit as $\varepsilon \to 0$ of the functions:

$$\delta^{\varepsilon}(t) = \begin{cases} 0 & \text{if } t < 0 \\ \frac{1}{\varepsilon} & \text{if } 0 \leqslant t < \varepsilon \\ 0 & \text{if } t \geqslant \varepsilon \end{cases}$$



Key Integral Properties. If **c** is nonnegative:

Total area: $\int_0^\infty \delta(t-c)\ dt =$

Sifting property: $\int_0^\infty \delta(t-c)f(t)\ dt =$

Laplace transform: $\mathcal{L}(\delta_c)(s) =$

$$\mathcal{L}(\delta)(s) =$$

$$\mathcal{L}(\delta_{\mathbf{c}}\mathbf{f})(\mathbf{s}) =$$

The Laplace transform of δ_c would be:

$$\int_0^\infty e^{-st} \delta_c(t) dt$$

Example 1. Solve the following initial value problem:

$$y^{\prime\prime}-12y^{\prime}+40y=\delta(t-\frac{\pi}{6})\sin t$$
 with $y(0)=y^{\prime}(0)=0$

Recall the Laplace transform rules:

$$\mathcal{L}(y')(s) = sY - y(0)$$

$$\mathcal{L}(y'')(s) = s^2Y - sy(0) - y'(0)$$

Recall the formula from the last page:

$$\mathcal{L}(\delta_c f)(s) = e^{-c\,s} f(c)$$

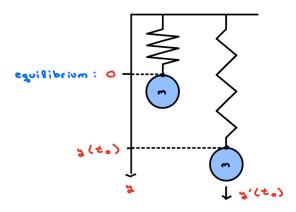
Recall the inverse translation formula:

$$\mathcal{L}^{-1}\lbrace e^{-cs}F(s)\rbrace(t) = H_c(t)f(t-c)$$

Recall the inverse Laplace formula:

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-\alpha)^2+b^2}\right\}(t) = \frac{e^{\alpha t}\sin bt}{b}$$

B. **Unit Impulse Response.** Consider a mass m hanging from a spring:



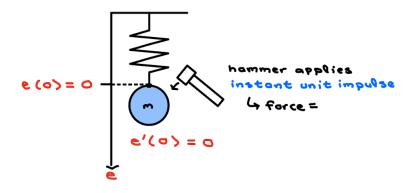
In the absence of an external force the differential equation governing motion is:

$$my'' + \mu y' + ky = 0$$

If there is an external force f(t) then the appropriate differential equation is:

$$my'' + \mu y' + ky =$$

In particular consider the response e(t) to an **instant unit impulse**:



 μ is the damping constant and k is the spring constant.

Impulse is (force) \cdot (change in time). If the impulse equals 1, but the change in time is 0, then the force must be ∞ .

Given a system with constant coefficients:

ay'' + by' + cy = f(t) with any initial values

the unit impulse response is the solution e(t) to initial value problem:

The Laplace transform of this system is:

and its solution is called the transfer function E.

E =

There is a technicality here: we will see that e'(0) is not actually defined in practice, because the sudden impulse leads to a corner, a failure of differentiability. Therefore the correct condition to impose here is $e'(0^-) = 0$, indicating that there is no response before the impulse hits, i.e. just to the left of time t=0.

In discussion section, you will learn that, in the s-domain, the transfer function converts the forcing term f(t) to a state-free solution of the system. A state-free system is one in which the initial values are all 0.

Example 2. Let ω_0 be a constant and consider the system:

$$y'' + \omega_0^2 y = \cos t$$
 with $y(0) = 1$ and $y'(0) = -1$

Find the transfer function and unit impulse response.

Recall the formula:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+b^2}\right\}(t) = \frac{\sin bt}{b}$$

Note that we need to multiply by the Heaviside function H(t) here because there is no response until the impulse hits at t=0. This leads to a strange issue: the condition e'(0)=0 is not technically defined because e(t) will not be differentiable at 0: it will have a corner due to truncation by the Heaviside. So really, the correct initial value to impose here is that $e'(0^-)=0$, i.e. the derivative coming from the left is zero, as was indicated in an earlier margin note. This is what the impulse reponse will genuinely satisfy.