Lecture 18. B4 — Dirac Delta Function and Impulse Response

A. Dirac Delta Function.

Intuitively the dirac delta function is defind by:
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and so its shift right by c is:
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Key Integral Properties. If c is nonnegative:

Total area: J S(t—rc) dt =
0
Sifting property: J d(t—c)f(t) dt =
0

Laplace transform: £(5.)(s) =

More precisely 5(t) is defined to be the
limit as € — 0 of the functions:
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The Laplace transform of 5. would be:
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Example 1. Solve the following initial value problem:

y” — 12y’ +40y = 8(t — %) sint with y(0) =y'(0) =0

Recall the Laplace transform rules:
L(y’)(s) = sY —y(0)

L(y")(s) =s?Y —sy(0) —y’(0)

Recall the formula from the last page:

L(5:5)(s) = e “%f(c)

Recall the inverse translation formula:
L7 e F(s)}(t) = Hc (t)f(t —c)
Recall the inverse Laplace formula:

e sin bt
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£1{(s—a)2+b2}(t)7 b
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B. Unit Impulse Response. Consider a mass m hanging from a spring:
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In the absence of an external force the differential equation governing motion is:
my” +my’ +ky =0

If there is an external force f(t) then the appropriate differential equation is:
my” +py’ +ky =

In particular consider the response e(t) to an instant unit impulse:
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Given a system with constant coefficients:
ay” + by’ + cy = f(t) with any initial values

the unit impulse response is the solution e(t) to initial value problem:

The Laplace transform of this system is:

and its solution is called the transfer function E.

E =

u is the damping constant and k is the
spring constant.

Impulse is (force) - (change in time). If
the impulse equals 1, but the change in
time is 0, then the force must be co.

There is a technicality here: we will see
that e’(0) is not actually defined in
practice, because the sudden impulse
leads to a corner, a failure of
differentiability. Therefore the correct
condition to impose here is e’(0) =0,
indicating that there is no response before
the impulse hits, i.e. just to the left of time
t=0.

In discussion section, you will learn that,
in the s—domain, the transfer function
converts the forcing term f(t) to a
state—free solution of the system. A
state—free system is one in which the
initial values are all 0.
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Example 2. Let w( be a constant and consider the system:
y” + w3y = cost with y(0) =1 and y’(0) = —1

Find the transfer function and unit impulse response.

Recall the formula:

1 sin bt
1 _
“ { s?2 + b2 } ® b

Note that we need to multiply by the
Heaviside function H(t) here because
there is no response until the impulse hits
at t = 0. This leads to a strange issue: the
condition e’(0) = 0 is not technically
defined because e(t) will not be
differentiable at O: it will have a corner
due to truncation by the Heaviside. So
really, the correct initial value to impose
here is that e/(0) = 0, i.e. the derivative
coming from the left is zero, as was
indicated in an earlier margin note. This
is what the impulse reponse will
genuinely satisfy.
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