
Lecture 18. B4 – Dirac Delta Function and Impulse Response

A. Dirac Delta Function.

Intuitively the dirac delta function is defind by:

δ(t) =

∞ if t = 0

0 if t ̸= 0

t

δ(t)

going to ∞

and so its shift right by c is:

δc(t) = δ(t− c) =


t

δc(t)

going to ∞
c

t

δϵ(t)

ϵ

1
ϵ

More precisely δ(t) is defined to be the
limit as ϵ → 0 of the functions:

δϵ(t) =


0 if t < 0

1
ϵ

if 0 ⩽ t < ϵ

0 if t ⩾ ϵ

Key Integral Properties. If c is nonnegative:

Total area:
∫∞
0

δ(t− c) dt =

Sifting property:
∫∞
0

δ(t− c)f(t) dt =

Laplace transform: L(δc)(s) =

L(δ)(s) =

L(δcf)(s) =

The Laplace transform of δc would be:∫∞
0

e−stδc(t) dt
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Example 1. Solve the following initial value problem:

y ′′ − 12y ′ + 40y = δ(t− π
6
) sin t with y(0) = y ′(0) = 0 Recall the Laplace transform rules:

L(y ′)(s) = sY − y(0)

L(y ′′)(s) = s2Y − sy(0) − y ′(0)

Recall the formula from the last page:

L(δcf)(s) = e−csf(c)

Recall the inverse translation formula:

L−1{e−csF(s)}(t) = Hc(t)f(t− c)

Recall the inverse Laplace formula:

L−1

{
1

(s− a)2 + b2

}
(t) =

eat sinbt

b
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B. Unit Impulse Response. Consider a mass m hanging from a spring:

In the absence of an external force the differential equation governing motion is:

my ′′ + µy ′ + ky = 0 µ is the damping constant and k is the
spring constant.

If there is an external force f(t) then the appropriate differential equation is:

my ′′ + µy ′ + ky =

In particular consider the response e(t) to an instant unit impulse: Impulse is (force) · (change in time). If
the impulse equals 1, but the change in
time is 0, then the force must be ∞.

Given a system with constant coefficients:

ay ′′ + by ′ + cy = f(t) with any initial values

the unit impulse response is the solution e(t) to initial value problem:

The Laplace transform of this system is:

and its solution is called the transfer function E.

E =

There is a technicality here: we will see
that e ′(0) is not actually defined in
practice, because the sudden impulse
leads to a corner, a failure of
differentiability. Therefore the correct
condition to impose here is e ′(0−) = 0,
indicating that there is no response before
the impulse hits, i.e. just to the left of time
t = 0.

In discussion section, you will learn that,
in the s–domain, the transfer function
converts the forcing term f(t) to a
state–free solution of the system. A
state–free system is one in which the
initial values are all 0.
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Example 2. Let ω0 be a constant and consider the system:

y ′′ +ω2
0y = cos t with y(0) = 1 and y ′(0) = −1

Find the transfer function and unit impulse response.

Recall the formula:

L−1

{
1

s2 + b2

}
(t) =

sinbt

b

Note that we need to multiply by the
Heaviside function H(t) here because
there is no response until the impulse hits
at t = 0. This leads to a strange issue: the
condition e ′(0) = 0 is not technically
defined because e(t) will not be
differentiable at 0: it will have a corner
due to truncation by the Heaviside. So
really, the correct initial value to impose
here is that e ′(0−) = 0, i.e. the derivative
coming from the left is zero, as was
indicated in an earlier margin note. This
is what the impulse reponse will
genuinely satisfy.
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