A. Input Free Response.

The **input-free response** y_i to a system:

ay'' + by' + cy = f(t) with initial values $y(0) = y_0$ and $y'(0) = y_1$ is the solution y_i with forcing term f(t) set to 0.

Show that the solution to the initial value problem above is:

$$y = y_s + y_i$$

 $y = y_s + y_i$ is the sum of the state–free (initial values set to 0) and input–free (forcing term set to 0) responses.

Recall: the state-free solution y_s satisfies:

$$ay_s'' + by_s + cy_s = f(t), y_s(0) = y_s'(0) = 0$$

Let us find a formula for the input-free response.

$$ay_i'' + by_i' + cy_i = 0$$
 with initial values $y_i(0) = y_0$ and $y_i'(0) = y_1$

The transfer function in this case will be:

$$E = \frac{1}{as^2 + bs + c}$$

Applying the Laplace transform to the input–free system and simplifying yields:

$$Y_i = AsE + BE$$
 for constants A and B

We want to apply the Laplace inverse. We do this by noting that:

$$\mathcal{L}(e') = sE - se(0) = sE$$

which tells us $\mathcal{L}^{-1}\{sE\} = e'$.

General Solution Formula. The solution to:

$$ay'' + by' + cy = f(t) \text{ with initial values } y(0) = y_0 \text{ and } y'(0) = y_1$$
 is $y = y_s + y_i = e * f +$

where *e* is the unit impulse response.

If you are observant you may wonder how $y_i(t)$ can equal Ae'(t) + Be(t) since isn't e(0) = e'(0) = 0 as part of being the impulse response? But that would mean $y_i(0) = 0...$ Well here is where we recall that in practice e'(0) is actually undefined (as a sudden impulse leads to a corner) and it was really $e'(0^-)$ that equalled 0. It is the values–from–the–right $y_i(0^+)$ and $y_i'(0^+)$ that will equal y_0 and y_1 .

Example 1. Provide an integral formula for the solution to:

$$y'' + 4y' + 13y = g(t)$$
 with $y(0) = -6$ and $y'(0) = 3$

Recall:

$$\begin{split} E &= \frac{1}{as^2 + bs + c} \\ \mathcal{L}^{-1} &\left\{ \frac{1}{(s-a)^2 + b^2} \right\} = \frac{e^{at} \sin bt}{b} \end{split}$$

Recall the input-free response to:

$$ay'' + by' + cy = [anything]$$
 with initial values:
$$y(0) = y_0, y'(0) = y_1$$
 is:
$$y_i = ay_0e'(t) + (ay_1 + by_0)e(t)$$