A. Linear Systems. We illustrate the process of solving a linear system:

$$\begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \\ 2x + 6y + z = 2 \end{cases}$$

First we convert to an **augmented matrix** with variable coefficients on the left and constants on the right.

Next we apply **Gaussian elimination** to solve.

It involves the following row operations:

swap:

scale:

linearly combine:

The first nonzero entry in each row is called a **pivot**.

Step 1. Use row operations to make all entries below the top pivot equal 0.

A **linear system** is a system of equations in which variables appear linearly. In other words: each side of the equation is a linear combination of variables and constants. If you forgot: a linear combination of variables x, y, z for example has form ax + by + cz where a, b, and c are constant.

A **matrix** is a rectangular array of numbers.

This has the effect of **eliminating** x from the bottom equations.

Step 2. Use row operations to make all entries below the next highest pivot equal **0**, without upsetting the first column.

Step 3. Finish solving using back-substitution.

In other words, solve the bottom equation, then substitute the solution into the next–from–bottom equation, and so on.

B. Free Variables. In the previous example if we had made the adjustment:

$$\begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \end{cases} \mapsto \begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \\ 2x + 6y + \boxed{z} = \boxed{2} \end{cases}$$

The end of Gaussian elimination would have lead to:

$$\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 8 \\
0 & 0 & & 0
\end{array}\right)$$

which is **inconsistent** because it has:

On the other hand if we had instead made the adjustment:

$$\begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \end{cases} \mapsto \begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \\ 2x + 6y + \boxed{z} = \boxed{2} \end{cases}$$

The end of Gaussian elimination would have lead to:

$$\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 8 \\
0 & 0 & 8
\end{array}\right)$$

The system is **consistent** but:

In this case: assign every variable whose column has no pivot as a **free variable**, and use back—substitution to solve for the others in terms of free variables.

The idea is that the equation 0 = 1 is

unsatisfiable.

It is consistent because there are no unsatisfiable equations at the end of our Gaussian elimination.

A free variable can take on any value, meaning there will be ∞ solutions to the system.

The goal of Gaussian elimination is to use row–operations to convert an augmented matrix to **row–echelon form**. This form is characterized by:

- 1. Each pivot is:
- 2. All rows of all zeroes are:

C. **Matrix Operations.** In general a **matrix** is a rectangular array of numbers.

Of special note are (column) vectors which contain only one column:

For us, a vector will always refer to a column vector. But it in many contexts it is perfectly reasonable to talk about row vectors too.

There are number of linear operations we can execute with matrices.

scalar multiplication:
$$5\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} =$$

addition:
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} =$$

transpose:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T =$$

zero matrix: 0 =

Properties. Let A and B be matrices of the same size. Let k be a scalar.

commutativity of addition: A + B =

distributivity of scalar multiplication: k(A + B) =

zero matrix as additive identity: A + 0 =

A real number is referred to as a **scalar**. In scalar multiplication, each entry is multiplied (scaled) by that scalar.

Only matrices of the same **size** (same number of rows, same number of columns) can be added. We simply add the entries located in the same positions.

Taking the transpose swaps rows and columns.

D. Matrix Product. We define (matrix)(column vector) so we can convert:

$$\begin{cases} x + 2y + 3z = 0 \\ -3x - 5y - 8z = 8 \end{cases} \mapsto$$
$$2x + 6y + z = 2$$

In other words:

$$\begin{pmatrix} row & 1 \\ \vdots \\ row & m \end{pmatrix} (column vector) =$$

And then we define product (matrix) (matrix) by:

$$\begin{pmatrix} \text{row 1} \\ \vdots \\ \text{row m} \end{pmatrix} \begin{pmatrix} \text{column 1} & \cdots & \text{column n} \end{pmatrix} =$$

or equivalently:

(entry in row i and column j of product) =

For example:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

The identity matrix I has 1s along the main diagonal and 0s elsewhere:

I =

and has the property that:

$$IA =$$

$$AI =$$

The expression on the right is referred to as the **matrix form** of the system: Ax = b.

Here ⋅ is the **dot product** which you learned in Calculus III. If you forgot:

$$\langle a_1, \dots, a_n \rangle \cdot \langle b_1, \dots, b_n \rangle$$

= $a_1b_1 + \dots + a_nb_n$

The matrix product is not always defined. It requires that we take the dot product of rows of the first matrix with columns of the second. But a dot product can only be taken of vectors with the same number of entries.

The **main diagonal** is the diagonal from the upper–left to the bottom–right.

Here A is a matrix so that the multiplication is defined.

Example 1. Consider the matrices.

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Compute the following, which model pecularities of the matrix product.

DN =

ND =

The matrix product is **not** generally commutative. That is, it is possible that:

AB

 $N^2 =$

The matrix product does **not** have the cancellation property. That is:

AB = 0 and $A \neq 0$ does not imply:

A matrix N is **nilpotent** if there is a positive integer k so:

Certainly there is no nonzero real number that, when raised to a power, yields 0. Matrices are weird.

Nonetheless, the matrix product does have some reasonable properties.

Matrix Product Properties. Let A, B, C be matrices and k be a scalar.

commutativity with scalar multiplication: k(AB) =

distributivity: A(B + C) =

$$(A + B)C =$$

associativity: A(BC) =

multiplication with zero matrix: A0 =