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Example 1. Consider the circuit below. Assume R, L, and C are constant.

Find a differential equation in variables I1 and I2 that models the system.

In addition to the reminded laws on the right, you will need:

Kirkhoff’s Current Law.

At any juncture, the current in equals the current out.

Some reminders about electrical circuits.

Kirkhoff’s Voltage Law:

• directed sum of voltages around any
closed loop equals 0

Impeding voltages across components:

• resistor: Ohm’s Law ER = RI

• capacitor: Capacticance Law E ′
C = Q

C

• inductor: Faraday’s Law EL = LdI
dt

Current is derivative of charge:

• I = dQ

dt

We apply Kirkhoff’s voltage law to the
left loop and the outer loop.

Here: Q2 stands for the charge built up
on the capacitor by curent I2.
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A. Autonomous 2D Systems. Consider an autonomous 2D system like: By 2D, we mean involving two variables x

and y. Autonomous meant that t does not
appear.


x ′ = sin

(πy
4

)
y ′ = cos

(πx
4

)
We can think of the solution:

x(t) =

(
x(t)

y(t)

)
as a:

in the xy–plane, which here we call the phase plane.

We can think of its derivative:

x ′(t) =

(
x ′(t)

y ′(t)

)
as the:

This relationship between a parametrized
curve x(t) and its tangent vector x ′(t) is
something that you learned in Calculus
III. How does Caclulus III keep sneaking
in here.

In our case: x ′(t) = f(x, y) depends only on x and y.

So: rooted at each point (x, y) we sketch tangent vector x ′(t) = f(x, y) to the so-
lution curve constructing the direction field for this planar autonomous system,
scaling if necessary to prevent overlap. It is called a direction field, because each

sketched vector is tangent to a solution
curve, hence indicates the direction of the
solution.

In this picture, vectors have been scaled to
prevent overlap.

Below we confirm correctness of the
sketch by considering a particular (x, y).

Above: sketch the solution with initial values x(0) = −1 and y(0) = 0.
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B. Homogeneous Linear Systems with Constant Coefficients.

Consider a 1st–order homogeneous linear system with constant matrix A:

x ′ = Ax

An example of such a system is:
x ′ = −3x+ 2y

y ′ = x− 2y

Notice that the coefficients of x and y are
constants, i.e. do not involve t.

Suppose we have located eigenvector v of A with eigenvalue λ.

Let us verify that a solution to to the system is:

x = eλtv The reason we might suspect that an x of
this form is a solution is that: on the one
hand, multiplication by A scales v by λ:

Av = λv

On the other hand, differentiating eλt also
leads to scaling by λ:(
eλt
) ′

= λeλt

Homogoneous Linear Solution if Eigenbasis.

If A is 2× 2 and has eigenbasis v1, v2, with eigenvalues λ1, λ2 then:

x ′ = Ax

has fundamental set of solutions:

x1 =

x2 =

which means the general solution to the system has form:

x =

A property of homogeneous linear
systems is: any linear combination of
solutions is also a solution, which is why
we express general solution x as a linear
combination of the fundamental set of
solutions.

The fact that we only need 2 fundamental
solutions is tied to the theory of
homogeneous linear systems, and is
specifically required because the size of A
is 2× 2.
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Example 2. Find the general solution to the system:x ′ = −3x− y

y ′ = −x− 3y
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