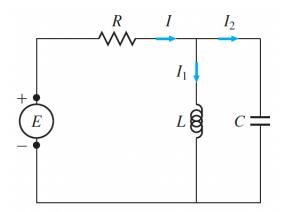
Example 1. Consider the circuit below. Assume R, L, and C are constant.



Find a differential equation in variables I_1 and I_2 that models the system. In addition to the reminded laws on the right, you will need:

Kirkhoff's Current Law.

At any juncture, the current in equals the current out.

Some reminders about electrical circuits.

Kirkhoff's Voltage Law:

 \bullet directed sum of voltages around any closed loop equals 0

Impeding voltages across components:

- resistor: Ohm's Law $E_R = RI$
- capacitor: Capacticance Law $E'_{C} = \frac{Q}{C}$
- inductor: Faraday's Law $E_L = L \frac{dI}{dt}$

Current is derivative of charge:

•
$$I = \frac{dQ}{dt}$$

We apply Kirkhoff's voltage law to the left loop and the outer loop.

Here: Q_2 stands for the charge built up on the capacitor by curent I_2 .

A. Autonomous 2D Systems. Consider an autonomous 2D system like:

$$\begin{cases} x' = \sin\left(\frac{\pi y}{4}\right) \\ y' = \cos\left(\frac{\pi x}{4}\right) \end{cases}$$

We can think of the solution:

$$\mathbf{x}(t) = \begin{pmatrix} \mathbf{x}(t) \\ \mathbf{y}(t) \end{pmatrix}$$
 as a:

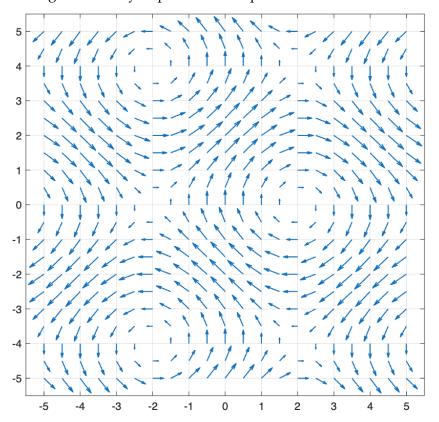
in the xy-plane, which here we call the phase plane.

We can think of its derivative:

$$\mathbf{x}'(t) = \begin{pmatrix} \mathbf{x}'(t) \\ \mathbf{y}'(t) \end{pmatrix}$$
 as the:

In our case: $\mathbf{x}'(\mathbf{t}) = \mathbf{f}(\mathbf{x}, \mathbf{y})$ depends only on \mathbf{x} and \mathbf{y} .

So: rooted at each point (x, y) we sketch tangent vector $\mathbf{x}'(t) = \mathbf{f}(x, y)$ to the solution curve constructing the **direction field** for this planar autonomous system, scaling if necessary to prevent overlap.



Above: sketch the solution with initial values x(0) = -1 and y(0) = 0.

By 2D, we mean involving two variables \boldsymbol{x} and \boldsymbol{y} . Autonomous meant that \boldsymbol{t} does not appear.

This relationship between a parametrized curve $\mathbf{x}(t)$ and its tangent vector $\mathbf{x}'(t)$ is something that you learned in Calculus III. How does Caclulus III keep sneaking in here.

It is called a direction field, because each sketched vector is tangent to a solution curve, hence indicates the **direction** of the solution.

In this picture, vectors have been scaled to prevent overlap.

Below we confirm correctness of the sketch by considering a particular (x, y).

B. Homogeneous Linear Systems with Constant Coefficients.

Consider a 1st–order homogeneous linear system with constant matrix A:

$$\mathbf{x}' = A\mathbf{x}$$

Suppose we have located eigenvector \mathbf{v} of \mathbf{A} with eigenvalue λ .

Let us verify that a solution to to the system is:

$$\mathbf{x} = e^{\lambda t} \mathbf{v}$$

An example of such a system is:

$$\begin{cases} x' = -3x + 2y \\ y' = x - 2y \end{cases}$$

Notice that the coefficients of x and y are constants, i.e. do not involve t.

The reason we might suspect that an x of this form is a solution is that: on the one hand, multiplication by A scales v by λ :

$$A\mathbf{v} = \lambda \mathbf{v}$$

On the other hand, differentiating $e^{\lambda t}$ also leads to scaling by λ :

$$(e^{\lambda t})' = \lambda e^{\lambda t}$$

Homogoneous Linear Solution if Eigenbasis.

If A is 2×2 and has eigenbasis v_1 , v_2 , with eigenvalues λ_1 , λ_2 then:

$$\mathbf{x}' = A\mathbf{x}$$

has **fundamental set** of solutions:

 $\mathbf{x}_1 =$

 $\mathbf{x}_2 =$

which means the general solution to the system has form:

 $\mathbf{x} =$

A property of **homogeneous** linear systems is: any linear combination of solutions is also a solution, which is why we express general solution **x** as a linear combination of the fundamental set of solutions.

The fact that we only need 2 fundamental solutions is tied to the theory of homogeneous linear systems, and is specifically required because the size of A is 2×2 .

Example 2. Find the general solution to the system:

$$\begin{cases} x' = -3x - y \\ y' = -x - 3y \end{cases}$$