Lecture 26. This page: C2 — Systems of Differential Equations. Later ... C3.

Example 1. Consider the circuit below. Assume R, L, and C are constant.

R 1 L

Find a differential equation in variables I; and I, that models the system.

In addition to the reminded laws on the right, you will need:

Kirkhoff’s Current Law.

At any juncture, the current in equals the current out.

Some reminders about electrical circuits.
Kirkhoff’s Voltage Law:

e directed sum of voltages around any
closed loop equals 0

Impeding voltages across components:
e resistor: Ohm’s Law Er = RI

e capacitor: Capacticance Law E(. = %

e inductor: Faraday’s Law E; = L%

Current is derivative of charge:

— dQ
.I—F

We apply Kirkhoff’s voltage law to the
left loop and the outer loop.

Here: Q, stands for the charge built up
on the capacitor by curent I,.
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A. Autonomous 2D Systems. Consider an autonomous 2D system like:

x’ = sin (%y)
yeon()

We can think of the solution:

in the xy—plane, which here we call the phase plane.

We can think of its derivative:

x/'(t) = (;:Eg) as the:

In our case: x'(t) = f(x,y) depends only on x and y.

So: rooted at each point (x,y) we sketch tangent vector x’(t) = f(x,y) to the so-
lution curve constructing the direction field for this planar autonomous system,
scaling if necessary to prevent overlap.
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By 2D, we mean involving two variables x
and y. Autonomous meant that t does not
appear.

This relationship between a parametrized
curve x(t) and its tangent vector x’(t) is
something that you learned in Calculus
III. How does Caclulus III keep sneaking
in here.

It is called a direction field, because each
sketched vector is tangent to a solution
curve, hence indicates the direction of the
solution.

In this picture, vectors have been scaled to
prevent overlap.

Below we confirm correctness of the
sketch by considering a particular (x,y).
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B. Homogeneous Linear Systems with Constant Coefficients.

Consider a 1st-order homogeneous linear system with constant matrix A:
x' = Ax

Suppose we have located eigenvector v of A with eigenvalue A.

Let us verify that a solution to to the system is:

x = eMy

Homogoneous Linear Solution if Eigenbasis.
If A is 2 x 2 and has eigenbasis v1, v,, with eigenvalues A7, A, then:
x' = Ax

has fundamental set of solutions:

X] =

Xy =

which means the general solution to the system has form:

X =

An example of such a system is:
x'=-3x+2y

Yy =x—2y
Notice that the coefficients of x and y are

constants, i.e. do not involve t.

The reason we might suspect that an x of
this form is a solution is that: on the one
hand, multiplication by A scales v by A:

Av = Av

On the other hand, differentiating e also
leads to scaling by A:

(e)\t)’ — AeMt

A property of homogeneous linear
systems is: any linear combination of
solutions is also a solution, which is why
we express general solution x as a linear
combination of the fundamental set of
solutions.

The fact that we only need 2 fundamental
solutions is tied to the theory of
homogeneous linear systems, and is
specifically required because the size of A
is 2 x 2.
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Example 2. Find the general solution to the system:

x'=-3x—y

/

Yy =-—x—3y
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