Remember: planar meant linear,

x'=-=3x—y
y'=—x—3y

Lecture 27. C3 — Homogeneous Linear Systems with Constant Coefficients.

we solved is planar. So it has a direction field.

A. Phase Plane. The system:

|

autonomous, and 2D. To have a direction

field in the xy-plane, all we need is

autonomous (does not involve t) and 2D.
In this case, the xy-plane was called the

We had found solution:

phase plane.
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because eigenvalues are:
Ax for different 2 x 2 matrices A.
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Because the eigenvalues are positive, as

which has solution:

t — oo the solutions go to co.
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Here are other examples for systems x’

classification:
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Lecture 27. C3 — Homogeneous Linear Systems with Constant Coefficients.
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classification: because eigenvalues are:

B. Complex Eigenvalues.
Let A be a 2 x 2 matrix with complex eigenvalue A with complex eigenvector v

Therefore a fundamental set of complex solutions to x’ = Ax are:

N|

This is the direction field for x’ = Ax for:

)

which has solution:

-1 2
x=Cie 3t < : ) + C,edt <]>

Because the eigenvalues are mixed sign,
as t increases, the solutions both move

towards and away from the origin.

Remember that complex eigenstuff comes

in complex conjugate pairs. So the
conjugate A is also a complex eigenvalue,

and its complex eignvector is v.

The idea is that, as mentioned in an earlier

In the scenario above, a real fundamental set of solutions to x’ = Ax is:

X1 =

Xy =
and the general solution is a linear combination of these: x = Cyx; + Cox;

margin note, a linear combination of
solutions to a homogeneous linear system
is also a solution. In our case, we use that
the real and imaginary parts of z are
linear combinations of z and z. Namely:

Re(z) = ZJZFZ and Im(z) — Zz_iz




Lecture 27. C3 — Homogeneous Linear Systems with Constant Coefficients.

Example 1. Find the general solution to x’ = Ax where:

(7

Recall:

e® =cos0 +1isin0



Lecture 27. C3 — Homogeneous Linear Systems with Constant Coefficients.

C. Phase Plane: Complex Eigenvalues. We just solved system x’ = Ax where:

(07

The direction field for this system is:
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classification: because the complex eigenvalues:

Here are other examples where A has complex eigenvalues.
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classification: because the complex eigenvalues:

This is the direction field for x’ = Ax for:

()

having eigenvalues A = 1 4 2i and:

(x) _Cpelt <0952t> L Cyelt <—sin2t>
y sin 2t cos 2t

Because the real part of the eigenvalues is
positive, and due to the cosine and sine,
as t — oo the solutions go to co and
circulate about the origin.

This is the direction field for x’ = Ax for:

(3 2)

having eigenvalues A = —1 £ 2i and:

X —
Y
cos 2t sin 2t
C e—]t + C e—lt
! ( sin 2t> ’ cos 2t

Because the real part of the eigenvalues is
negative, and due to the cosine and sine,
as t — oo the solutions aprooach the
origin while circulating about it.
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classification:

because the complex eigenvalues:

This is the direction field for x’ = Ax for:

0 —4
1 0

having eigenvalues A = +2i and:

X —2sin 2t 2cos2t

y ! cos 2t sin 2t

Because the real part of the eigenvalues is
zero, and due to the cosine and sine, as

t — oo the solutions circle about the
origin.
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