

A. Exact Forms. A **differential 1-form** is an expression:

$$\omega = M(x, y) dx + N(x, y) dy$$

For example: rewrite the following equation as a 1-form set equal to 0:

$$\frac{dy}{dx} = -\frac{2x + y}{x - 1}$$

Differential forms unify our approach to solving first-order differential equations. They can be used to address first-order separable and linear, but also to address others! The key to this unification is to write differential forms as **exact** forms, see below, using integrating factors as necessary.

The **total derivative** of a function $F(x, y)$ is:

$$dF =$$

F_x and F_y are shorthand for $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$.

For example:

$$d(x^2 + y^2) =$$

A differential form $\omega = M dx + N dy$ is **exact** if there exists a **potential** F so:

or in other words so:

$$M =$$

$$N =$$

For “nice” differential forms, you can check exactness by confirming:

(closed criterion)

A “nice” differential form here includes the case that M and N are defined and continuously differentiable everywhere. Continuously differentiable means they are differentiable, and their derivatives are continuous.

The reason that the closed criterion should hold is that, if $M = F_x$ and $N = F_y$, then $M_y = F_{xy}$ and $N_x = F_{yx}$. By Clairaut’s Theorem (Calc III!) these mixed derivatives should be equal!

Example 1. Decide whether the form is exact, and if so locate a potential \mathbf{F} .

(a) $(2x + y) dx + (xy) dy$

(b) $(2x + y) dx + (x - 1) dy$

The strategy to locate potential \mathbf{F} for exact:

$M dx + N dy$

is as follows:

Step 1. Set up equations

I: $F_x = M$

II: $F_y = N$

Step 2. Integrate (I) with respect to dx .

I: $F = \int M dx$

When you compute this integral you need to add $+ [\text{constant with respect to } x]$, i.e. $+ g(y)$ where $g(y)$ is currently unknown.

Step 3. Plug the new equation I into equation II and solve for $g(y)$.

B. Exact Equations. An **exact equation** is one of form:

$$M \, dx + N \, dy = 0$$

where $\omega = M \, dx + N \, dy$ is exact.

Suppose F is a potential.

Exact Equation Solution If:

$$M \, dx + N \, dy = 0$$

is an exact equation with a potential F , then the solution satisfies:

Example 2. Solve the initial value problem:

$$(2x + y) + (x - 1)y' = 0 \text{ with } y(2) = 0$$

by converting it to an exact equation.

In an earlier example you found a potential for the differential form:

$$(2x + y) dx + (x - 1) dy$$

to be:

$$F(x, y) = x^2 + xy - y$$