

A. Counting. Let us consider the experiment of rolling a fair 6-sided die.

The **sample space** Ω is the set of all possible outcomes. In the case of the die roll:

$$\Omega =$$

Because the die is fair, each outcome is:

Consider the event that the die lands on an odd number. Formally, an **event** is a subset of the sample space. For the event of an odd number, that subset is:

$$\Omega_{\text{odd}} =$$

Since each outcome is equally likely, the **probability** of the event Ω_{odd} is:

$$\mathbb{P}(\text{roll is odd}) = \mathbb{P}(\Omega_{\text{odd}}) =$$

For equally likely outcomes, the key to computing probability is **counting**. So, for this topic, we concentrate on counting, and counting alone. We will re-introduce probability in the next topic.

Let us instead roll the 6-sided die two times. The **new** combined sample space for the first and second rolls is:

$$\Omega = \left\{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \right\}$$

which has size $|\Omega| =$

Basic Principle of Counting. Suppose that Trial 1 and Trial 2 are performed.

If Trial 1 results in m possible outcomes, and if, for each possible outcome of Trial 1, Trial 2 results in n possible outcomes, then the **combined** number of outcomes for Trial 1 and 2 is:

Generally: a **set** is a collection of objects, and we refer to those objects as **elements** of the set. So, the elements of the sample space are the outcomes.

If S is a set, then $|S|$ denotes the size of that set, i.e. the number of elements it contains.

Example 1. An ID consists of 3 upper-case letters, each from A to Z, followed by 2 digits, each from 0 to 9. For example, **ABC01** or **ZZZ99**.

(a) Count the number of passwords, where repetition of characters is allowed.

(b) Count the number of passwords, where repetition of characters is not allowed.

B. Permutations. A **permutation** of a set is a way of ordering its elements in a row. For example, all the possible permutations of $\{a, b, c\}$ are:

The number of permutations of a set of size 3 is thus:

$3! =$

Counting Permutations. The number of permutations of a set of size n is:

$n! =$

And we define $0! =$

The idea behind $0! = 1$ is that there is only 1 way to arrange a set consisting of no elements, do nothing!

A **k -permutation** of a set is a way of ordering k of its elements in a row. For example, all the possible 2-permutations of $\{a, b, c, d, e\}$ are:

$ab, ba, ac, ca, ad, da, ae, ea, bc, cb, bd, db, be, eb, cd, dc, ce, ec, de, ed$

Because this set has size 5, the number of 2-permutations is denoted by:

${}_5P_2 =$

Counting k -Permutations.

If $k \in \{0, \dots, n\}$, then the number of k -permutations of a set of size n is:

${}_n P_k =$

If $k \notin \{0, \dots, n\}$, then we define ${}_n P_k =$

The notation \in is read as “in” or “belongs to”.

For example, let us revisit the example of counting passwords consisting of 3 upper-case letters, followed by 2 digits.

repetition not allowed \implies

C. Multiset Permutations. A **multiset** is a set where repetition of its elements is allowed. Consider for example the multiset:

$\{a, a, a, b, b\}$

The **multiplicity** of an element is the number of times it appears. So, for the set above, **a** has multiplicity **3** and **b** has multiplicity **2**. A permutation of a multiset is an ordering of its elements in a row. For example, the permutations of $\{a, a, a, b, b\}$ are:

aaabb, aabab, abaab, baaab, aabba, ababa, baaba, abbaa, babaa, bbaaa

We can alternatively count the number of these multiset permutations by **first** counting the number of regular set permutations of $\{a_1, a_2, a_3, b_1, b_2\}$ and then **dividing by the factors of overcounting**.

Note that plain sets do not account for repetition. For example, a set cannot have the element **a** twice. It either has the element **a**, or does not.

Multiset Permutations. The number of permutations of a multiset of size **n**, with **r** distinct elements having multiplicities n_1, n_2, \dots, n_r , equals the **multinomial coefficient**:

$$\binom{n}{n_1, n_2, \dots, n_r} =$$

This defines the multinomial coefficient so long as n_1, \dots, n_r are nonnegative integers and $n_1 + \dots + n_r = n$. If either of these conditions fails, we define this multinomial coefficient to be **0**.

Example 2. How many ways can the letters in the word PEPPER be arranged?